Germline and somatic mutations in cortical malformations: Molecular defects in Argentinean patients with neuronal migration disorders

نویسندگان

  • Dolores González-Morón
  • Sebastián Vishnopolska
  • Damián Consalvo
  • Nancy Medina
  • Marcelo Marti
  • Marta Córdoba
  • Cecilia Vazquez-Dusefante
  • Santiago Claverie
  • Sergio Alejandro Rodríguez-Quiroga
  • Patricia Vega
  • Walter Silva
  • Silvia Kochen
  • Marcelo Andrés Kauffman
چکیده

Neuronal migration disorders are a clinically and genetically heterogeneous group of malformations of cortical development, frequently responsible for severe disability. Despite the increasing knowledge of the molecular mechanisms underlying this group of diseases, their genetic diagnosis remains unattainable in a high proportion of cases. Here, we present the results of 38 patients with lissencephaly, periventricular heterotopia and subcortical band heterotopia from Argentina. We performed Sanger and Next Generation Sequencing (NGS) of DCX, FLNA and ARX and searched for copy number variations by MLPA in PAFAH1B1, DCX, POMT1, and POMGNT1. Additionally, somatic mosaicism at 5% or higher was investigated by means of targeted high coverage NGS of DCX, ARX, and PAFAH1B1. Our approach had a diagnostic yield of 36%. Pathogenic or likely pathogenic variants were identified in 14 patients, including 10 germline (five novel) and 4 somatic mutations in FLNA, DCX, ARX and PAFAH1B1 genes. This study represents the largest series of patients comprehensively characterized in our population. Our findings reinforce the importance of somatic mutations in the pathophysiology and diagnosis of neuronal migration disorders and contribute to expand their phenotype-genotype correlations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in the neuronal ß-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects.

Mutations in the TUBB3 gene, encoding β-tubulin isotype III, were recently shown to be associated with various neurological syndromes which all have in common the ocular motility disorder, congenital fibrosis of the extraocular muscle type 3 (CFEOM3). Surprisingly and in contrast to previously described TUBA1A and TUBB2B phenotypes, no evidence of dysfunctional neuronal migration and cortical o...

متن کامل

doublecortin-like kinase Functions with doublecortin to Mediate Fiber Tract Decussation and Neuronal Migration

The potential role of doublecortin (Dcx), encoding a microtubule-associated protein, in brain development has remained controversial. Humans with mutations show profound alterations in cortical lamination, whereas in mouse, RNAi-mediated knockdown but not germline knockout shows abnormal positioning of cortical neurons. Here, we report that the doublecortin-like kinase (Dclk) gene functions in ...

متن کامل

Neuronal migration and its disorders affecting the CA3 region

In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 ph...

متن کامل

Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy

OBJECTIVE To assess the prevalence of somatic MTOR mutations in focal cortical dysplasia (FCD) and of germline MTOR mutations in a broad range of epilepsies. METHODS We collected 20 blood-brain paired samples from patients with FCD and searched for somatic variants using deep-targeted gene panel sequencing. Germline mutations in MTOR were assessed in a French research cohort of 93 probands wi...

متن کامل

Genotype-phenotype correlation in neuronal migration disorders and cortical dysplasias

Neuronal migration disorders are human (or animal) diseases that result from a disruption in the normal movement of neurons from their original birth site to their final destination during early development. As a consequence, the neurons remain somewhere along their migratory route, their location depending on the pathological mechanism and its severity. The neurons form characteristic abnormal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017